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Renormdynamics

Quantum field theory (QFT) and Fractal calcu-

lus (FC) provide Universal language of fundamental

physics (see e.g. [9]). In QFT existence of a given

theory means, that we can control its behavior at

some scales (short or large distances) by renormal-

ization theory [3]. If the theory exists, than we want

to solve it, which means to determine what happens

on other (large or short) scales. This is the prob-

lem (and content) of Renormdynamics. The result

of the Renormdynamics, the solution of its discrete

or continual motion equations, is the effective QFT

on a given scale (different from the initial one).

Perturbation theory series (PTS) have the follow-

ing qualitative form

f(x) =

∑

n≥0

P (n)n!xn

= P (δ)Γ(1 + δ)
1

1 − x
, δ = x

d

dx
(1)

So, we reduce previous series to the standard geo-

metric progression series. This series is convergent

for |x| < 1 or for |x|p = p−k < 1, x = pka/b, k ≥

1, p = 2, 3, 5, ..., 29, ..., 137, ... With an appropriate

nomalization of the expansion parameter, the co-

efficients of the series are rational numbers and if

experimental data indicates for some prime value

for x, e.g. in QED, x = α = e2/(4π) = 1/137.036...,

then we can take corresponding prime number and

consider p-adic convergence of the series.

In the Yukawa theory of strong interactions (see

e.g. [1]), we take x = απN = 13,

|f |p ≤

∑

|fn|pp
−n <

1

1 − p−1
, p = 13 (2)

So, the series is convergent. If the limit is rational

number, we consider it as an observable value of the

corresponding physical quantity.

In MSSM (see [6]) coupling constants unifies at

α−1
u = 26.3 ± 1.9 ± 1. So, 23.4 < α−1

u < 29.2

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (3)

Only one!

Proposal: take the value α−1
u = 29.0... which will

be two orders of magnitude more precise prediction

and find the consequences for the SM scale observ-

ables.

Goldberger-Treiman relation and the pion-

nucleon coupling constant

The Goldberger-Treiman relation (GTR) [5] plays

an important role in theoretical hadronic and nu-

clear physics. GTR relates the Meson-Nucleon cou-

pling constants to the axial-vector coupling constant

in β-decay: gπNfπ = gAmN , where mN is the nu-

cleon mass, gA is the axial-vector coupling constant

in nucleon β-decay at vanishing momentum trans-

fer, fπ is the π decay constant and gπN is the π−N

coupling constant.

Since the days when the Goldberger-Treiman re-

lation was discovered, the value of gA has increased

considerably. Also, fπ decreased a little, on account

of radiative corrections. The main source of uncer-

tainty is gπN . When we take

απN =
g2

πN

4π
= 13 ⇒ gπN = 12.78, (4)

experimental value for fπ from pion decay and neu-

tron mass

fπ =
130
√

2
= 91.9MeV, mN = 940MeV, (5)

we find

gA =
fπgπN

mN
=

91.9 ×
√

52π

940

= 1.2496 ' 1.25 =
5

4
(6)

Renormdynamics of QCD

QCD is the theory of the strong interactions with,

as only inputs, one mass parameter for each quark

species and the value of the QCD coupling con-

stant at some energy or momentum scale in some

renormalization scheme. This last free parameter of

the theory can be fixed by ΛQCD, the energy scale

used as the typical boundary condition for the in-

tegration of the Renormdynamic (RD) equation for

the strong coupling constant. This is the parame-

ter which expresses the scale of strong interactions,

the only parameter in the limit of massless quarks.

While the evolution of the coupling with the mo-

mentum scale is determined by the quantum cor-

rections induced by the renormalization of the bare

coupling and can be computed in perturbation the-

ory, the strength itself of the interaction, given at
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any scale by the value of the renormalized coupling

at this scale, or equivalently by ΛQCD, is one of the

above mentioned parameters of the theory and has

to be taken from experiment.

The RD equation for the coupling constant is

ȧ = β(a) = β2a
2

+ β3a
3

+ β4a
4

+ β5a
5

+ ...
∫ a

a0

da

β(a)
= t− t0 = ln

µ2

µ2
0

, (7)

µ is the ’t Hooft unit of mass, the renormalization

point in the MS-scheme. To calculate the β-function

we need to calculate the renormalization constant Z

of the coupling constant, ab = Za, where ab is the

bare (unrenormalized) charge. The expression of

the β-function can be obtained in the following way

0 = d(abµ
2ε

)/dt = µ2ε
(εZa+

∂(Za)

∂a

da

dt
)

⇒
da

dt
= β(a, ε) =

−εZa
∂(Za)

∂a

= −εa+ β(a),

β(a) = a
d

da
(aZ1), (8)

Z1 is the residue of the first pole in ε expansion

Z(a, ε) = 1 + Z1ε
−1

+ ...+ Znε
−n

+ ... (9)

Reparametrization and general method of

solution of the RD equation

RD equation,

ȧ = β1a+ β2a
2

+ ... (10)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2

+ ...

+fnA
n

+ ... =
∑

n≥1

fnA
n, (11)

Ȧ = b1A+ b2A
2

+ ... =
∑

n≥1

bnA
n,

ȧ = Ȧf ′(A) =

= β1A+ (β2 + β1f2)A
2

+ (β3 + 2β2f2 + β1f3)A
3
+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)An
+ ...

=

∑

n,n1,n2≥1

Anbn1
n2fn2

δn,n1+n2−1,

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,

b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1
= β3 + 2(f2

2 − f3)β1,

b4 = β4 + 3f2β3 + f2
2β2

+2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...

bn = βn + ...+ β1fn

−2f2bn−1 − ...− nfnb1, ... (12)

so, by reparametrization, beyond the critical dimen-

sion (β1 6= 0) we can change any coefficient but β1.

We can fix any higher coefficient with zero value,

if we take

f2 =
β2

β1

, f3 =
β3

2β1

+ f2
2 , ... , fn =

βn + ...

(n− 1)β1

, ... (13)

In the critical dimension of space-time, β1 = 0,

and we can change by reparametrization any coeffi-

cient but β2 and β3.

From the relations (12), in the critical dimenshion

(β1 = 0), we find that, we can define the minimal

form of the RD equation

Ȧ = β2A
2

+ β3A
3, (14)

We can solve (14) as implicit function,

uβ3/β2e−u
= ceβ2t, u =

1

A
+
β3

β2

(15)

then, as in the noncritical case, explicit solution for

a will be given by reparametrization representation

(11) [10].

If we know somehow the coefficients βn, e.g. for

first several exact and for others asymptotic values

(see e.g. [7]) than we can construct reparametriza-

tion function (11) and find the dynamics of the

running coupling constant. This is similar to the

action-angular canonical transformation of the an-

alytic mechanics (see e.g. [4]).

Statement: The reparametrization series for a is

p-adically convergent, when βn and A are rational

numbers.

QCD, parton model, valence quarks and

α
s
= 2

While it has been well established in the pertur-

bative regime at high energies, QCD still lacks a

comprehensive solution at low and intermediate en-

ergies, even 40 years after its invention. In order to

deal with the wealth of non-perturbative phenom-

ena, various approaches are followed with limited

validity and applicability. This is especially also

true for lattice QCD, various functional methods,

or chiral perturbation theory, to name only a few.

In neither one of these approaches the full dynami-

cal content of QCD can yet be included. Basically,

the difficulties are associated with a relativistically

covariant treatment of confinement and the sponta-

neous breaking of chiral symmetry, the latter being

a well-established property of QCD at low and in-

termediate energies. As a result, most hadron re-

actions, like resonance excitations, strong and elec-

troweak decays etc., are nowadays only amenable

to models of QCD. Most famous is the constituent-

quark model (CQM), which essentially relies on a

limited number of effective degrees of freedom with
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the aim of encoding the essential features of low-

and intermediate-energy QCD.

The CQM has a long history, and it has made im-

portant contributions to the understanding of many

hadron properties, think only of the fact that the

systematization of hadrons in the standard particle-

data base follows the valence-quark picture. The Q

dependence of the nucleon form factor corresponds

to three-constituent picture of the nucleon and is

well described by the simple expression [2], [8]

F (Q2
) ∼ (Q2

)
−2

(16)

It was noted [12] that parton densities given by

the following solution

M2(Q
2
) =

3

25
+

2

3
ω32/81

+
16

75
ω50/81,

M̄2(Q
2
) = Ms

2 (Q2
) =

3

25
−

1

3
ω32/81

+
16

75
ω50/81,

MG
2 (Q2

) =
16

25
(1 − ω50/81

),

ω =
αs(Q

2)

αs(m2)
, Q2

∈ (5, 20)GeV 2,

b = 11 −
2

3
nf = 9, αs(Q

2
) ' 0.2 (17)

of the Altarelli-Parisi equation

Ṁ = AM,

MT
= (M2, M̄2,M

s
2 ,M

G
2 ),

M2 =

∫ 1

0

dxx(u(x) + d(x)),

M̄2 =

∫ 1

0

dxx(ū(x) + d̄(x)),

Ms
2 =

∫ 1

0

dxx(s(x) + s̄(x)), MG
2 =

∫ 1

0

dxxG(x),

A = −a(Q2
)









32/9 0 0 −2/3

0 32/9 0 −2/3

0 0 32/9 −2/3

−32/9 −32/9 −32/9 2









a = (
g

4π
)
2, Ṁ = Q2 dM

dQ2
(18)

with the following valence quark initial condition at

a scale m

M̄2(m
2
) = Ms

2 (m2
) = MG

2 (m2
) = 0,

M2(m
2
) = 1 (19)

and

αs(m
2
) = 2, (20)

gives the experimental values

M2 = 0.44, M̄2 = Ms
2 = 0.04, MG

2 = 0.48 (21)

So, for valence quark model, αs(m
2) = 2.We have

seen, that for πρN model απρN = 3, and for πN

model απN = 13. It is nice that α2
s + α2

πρN = απN ;

to αs = 2 corresponds

g =
√

4παs = 5.013 = 5+ (22)

Hamiltonization of dynamical

systems

Let us consider a general dynamical system de-

scribed by the following system of the ordinary dif-

ferential equations [13]

ẋn = vn(x), 1 ≤ n ≤ N, (23)

ẋn stands for the total derivative with respect to

the parameter t. When the number of the degrees

of freedom is even, and

vn(x) = εnm
∂H

∂xm
, 1 ≤ n,m ≤ 2M, (24)

the system (23) is Hamiltonian one and can be put

in the form

ẋn = {xn, H}, (25)

where the Poisson bracket is defined as

{A,B} = εnm
∂A

∂xn

∂B

∂xm
= A

←

∂

∂xn
εnm

→

∂

∂xm
B, (26)

and summation rule under repeated indices has

been used.

Let us consider the following Lagrangian

L = (ẋn − vn(x))ψn (27)

and the corresponding motion equations

ẋn = vn(x), ψ̇n = −
∂vm

∂xn
ψm. (28)

The system (28) extends the general system (23) by

linear equation for the variables ψ. The extended

system can be put in the Hamiltonian form [20]

ẋn = {xn, H}, ψ̇n = {ψn, H}, (29)

where Hamiltonian is

H = vn(x)ψn (30)

and the bracket is defined as

{A,B} = A(

←

∂

∂xn

→

∂

∂ψn
−

←

∂

∂ψn

→

∂

∂xn
)B. (31)

In the Faddeev-Jackiw formalism [18] for the

Hamiltonian treatment of systems defined by first-

order Lagrangians,

L = fn(x)ẋn −H(x), (32)

motion equations

fmnẋn =
∂H

∂xm
, (33)
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for the regular structure function fmn, can be put

in the explicit Hamiltonian (Poisson; Dirac) form

ẋn = f−1
nm

∂H

∂xm
= {xn, xm}

∂H

∂xm
= {xn, H}, (34)

where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f−1
nm, fmn = ∂mfn − ∂nfm. (35)

The system (28) is an important example of the

first order regular Hamiltonian systems.

Indeed, in the new variables,

y1
n = xn, y

2
n = ψn, (36)

Lagrangian (27) takes the following first order form

L = (ẋn − vn(x))ψn

⇒
1

2
(ẋnψn − ψ̇nxn) − vn(x)ψn

=
1

2
ya

nε
abẏb

n −H(y)

= fa
n(y)ẏa

n −H(y),

fa
n =

1

2
yb

nε
ba, H = vn(y1

)y2
n,

fab
nm =

∂f b
m

∂ya
n

−
∂fa

n

∂yb
m

= εabδnm; (37)

corresponding motion equations and the fundamen-

tal Poisson bracket are

ẏa
n = εabδnm

∂H

∂yb
m

= {ya
n, H},

{ya
n, y

b
m} = εabδnm. (38)

The Hamiltonian mechanics (HM) is in the fun-

damentals of mathematical description of the phys-

ical theories [4]. But HM is in a sense blind; e.g.,

it does not make a difference between two oppo-

sites: the ergodic Hamiltonian systems (with just

one integral of motion) [29] and (super)integrable

Hamiltonian systems (with maximal number of the

integrals of motion). Nabu mechanics (NM) [28, 31]

is a proper generalization of the HM, which makes

the difference between dynamical systems with dif-

ferent numbers of integrals of motion explicit (see,

e.g.[24] ).

In the canonical formulation, the equations of mo-

tion of a physical system are defined via a Poisson

bracket and a Hamiltonian, [13]. In Nambu for-

mulation, the Poisson bracket is replaced by the

Nambu bracket with n+ 1, n ≥ 1, slots. For n = 1,

we have the canonical formalism with one Hamilto-

nian. For n ≥ 2, we have Nambu-Poisson formal-

ism, with n Hamiltonians, [28], [31].

The quasi-classical description of the motion of

a relativistic point particle with spin in accelerators

and storage rings includes the equations of orbit mo-

tion

ẋn = fn(x), fn(x) = εnm∂mH, n,m = 1, 2, ..., 6;

xn = qn, xn+3 = pn, εn,n+3 = 1, n = 1, 2, 3;

H = eΦ + c
√

℘2 +m2c2, ℘n = pn −
e

c
An (39)

and Thomas-BMT equations [30, 14] of classical

spin motion

ṡn = εnmkΩmsk = {H1, H2, sn},

H1 = Ω · s, H2 = s2,

{A,B,C} = εnmk∂nA∂mB∂kC,

Ωn =
−e

mγc
((1 + kγ)Bn − k

(B · ℘)℘n

m2c2(1 + γ)

+
1 + k(1 + γ)

mc(1 + γ)
εnmkEm℘k) (40)

where, parameters e and m are the charge and the

rest mass of the particle, c is the velocity of light,

k = (g − 2)/2 quantifies the anomalous spin g fac-

tor, γ is the Lorentz factor, pn are components of

the kinetic momentum vector, En and Bn are the

electric and magnetic fields, and An and Φ are the

vector and scalar potentials;

Bn = εnmk∂mAk, En = −∂nΦ −
1

c
Ȧn,

γ =
H − eΦ

mc2
=

√

1 +
℘2

m2c2
(41)

The spin motion equations we put in the Nambu-

Poisson form. Hamiltonization of this dynamical

system according to the general approach of the

previous sections we will put in the ground of the

optimal control theory of the accelerator.

The general method of Hamiltonization of the dy-

namical systems we can use also in the spinning par-

ticle case. Let us invent unified configuration space

q = (x, p, s), xn = qn, pn = qn+3, sn = qn+6, n =

1, 2, 3; extended phase space, (qn, ψn) and Hamilto-

nian

H = H(q, ψ) = vnψn, n = 1, 2, ...9; (42)

motion equations

q̇n = vn(q), ψ̇n = −
∂vm

∂qn
ψm (43)

where vn depends on external fields as in previous

section as control parameters which can be deter-

mined according to the optimal control criterium.
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